Epigenetic Modulation in Breast Cancer: From Mechanisms to Therapeutic Interventions

Sheudeen Abubakar Abiola *

Department of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

Adline E. Ben-Chioma

Department of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

Beega Godae Fidelis

Department of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

Simeon Christopher Aloy

Department of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

Anthony Augustine U.

Department of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

Ibioku Elekima

Department of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria and Department of Medical Diagnostics, Cranfield University, Cranfield, United Kingdom.

*Author to whom correspondence should be addressed.


Breast cancer, a complex and heterogeneous disease, remains a leading cause of global cancer-related morbidity and mortality. According to the World Health Organization 2020 report, breast cancer is responsible for over 685,000 deaths. This comprehensive review explores epigenetic modifications contributing to breast cancer initiation, progression, and therapeutic interventions. Dynamic modifications in DNA methylation, histone modifications, chromatin remodelling, and non-coding RNA expression patterns characterise the epigenetic landscape of breast cancer. Aberrant DNA methylation patterns, particularly in the promoter regions of tumour suppressor genes, lead to their silencing, providing a selective advantage for breast tumour cells. Histone modifications, mediated by enzymes such as histone acetyltransferases (HATs) and histone deacetylases (HDACs), influence chromatin structure, impacting gene accessibility and transcriptional activity. Dysregulation of chromatin remodelling complexes further disrupts gene expression patterns, contributing to tumour progression. Non-coding RNAs that play crucial roles in regulatory processes, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are essential in breast cancer biology. The therapeutic potential of targeting epigenetic modifications in breast cancer has gathered significant interest. DNA methylation inhibitors, histone deacetylase inhibitors, and agents targeting chromatin remodelling complexes have shown promise in preclinical and clinical settings. Additionally, identifying specific epigenetic biomarkers holds the potential for personalised therapeutic approaches. This article thoroughly analyses the relationship between epigenetics and breast cancer. Understanding the epigenetic alterations driving breast cancer offers promising avenues for developing targeted therapies, ultimately improving patient outcomes.

Keywords: Epigenetics, breast cancer, DNA methylation, histone modifications, medicine

How to Cite

Abiola , S. A., Ben-Chioma, A. E., Fidelis , B. G., Aloy , S. C., Anthony Augustine U., & Elekima , I. (2024). Epigenetic Modulation in Breast Cancer: From Mechanisms to Therapeutic Interventions. International Research Journal of Oncology, 7(1), 1–13. Retrieved from https://journalirjo.com/index.php/IRJO/article/view/144


Download data is not yet available.


Waddington CH. Canalisation of development and the inheritance of acquired characters. Nature. 1942;150: 563- 565.

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781-783.

Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532): 1074-80.

Al-Aboud NM, Tupper C, Jialal I. Genetics, Epigenetic Mechanism. In: StatPearls. StatPearls Publishing; 2022.

Foulkes WD, Flanders TY, Pollock PM, et al. The CDKN2A (p16) Gene and Human Cancer. Mol Med. 1997;3:5-20.

Choridah L, Kurniadi D, Ain K, et al. Comparison of electrical impedance tomography and ultrasonography for determination of solid and cystic lesion resembling breast tumor embedded in chicken phantom. J Electr Bioimpedance. 2021;12(1):63-68.

Sun H, Dai J, Chen M, et al. MiR-139-5p was identified as biomarker of different molecular subtypes of breast carcinoma. Front Oncol. 2022;12:857714.

Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15-23.

Alkabban FM, Ferguson T. Breast Cancer. In: StatPearls. StatPearlsPublishing; 2022. Available:https://www.ncbi.nlm.nih.gov/books/NBK482286/ [Accessed November 12, 2023]

Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets Ther. 2019;151–164.

Russo JIH, Russo IH. The role of estrogen in the initiation of breast cancer. J Steroid BiochemMol Biol. 2006;102(1-5):89-96.

National Cancer Institute. Breast Cancer and the Environment: Controversial and Emerging Exposures Workshop Summary; 2021. Available:https://www.cancer.gov/research/areas/causes/breast-cancer-environment [Accessed November 4, 2023].

Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 2021;12(1):1786.

Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget. 2017; 8(40):69162.

Bourdon JC, Fernandes K, Murray-Zmijewski F, et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 2005;19(18):2122-2137.

Ye T, Li J, Sun Z, et al. Cdh1 functions as an oncogene by inducing self-renewal of lung cancer stem-like cells via oncogenic pathways. Int J Biol Sci. 2020;16(3):447–459.

Ciechomska M, Roszkowski L, Maslinski W. DNA Methylation as a Future Therapeutic and Diagnostic Target in Rheumatoid Arthritis. Cells. 2019;8(9):953.

Greer EL, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–357.

Nayan V, Onteru SK, Singh D. Reproduction and nutriment–nurture crosstalk: Epigenetic perspectives. J Reprod Health Med. 2015;1(1):50-59.

Kurdistani S. Histone modifications as markers of cancer prognosis: A cellular view. Br J Cancer. 2007;97(1):1–5.

Kwei KA, Kung Y, Salari K, Holcomb IN, Pollack JR. Genomic instability in breast cancer: Pathogenesis and clinical implications. MolOncol. 2010;4(3):255–266.

Felipe Lima J, Nofech-Mozes S, Bayani J, Bartlett JM. EMT in Breast Carcinoma-A Review. J Clin Med. 2016;5(7):65.

Zhang FL, Li DQ. Targeting chromatin-remodeling factors in cancer cells: Promising molecules in cancer therapy. Int J Mol Sci. 2022;23(21):12815.

Xiao HD, Bifulco CB. Cellular and molecular pathology. Oral, head neck oncol reconstruct surg. 2018;57-78.

Schwartz CJ, Pareja F, da Silva EM, et al. Histologic and genomic features of breast cancers with alterations affecting the SWI/SNF (SMARC) genes. Mod Pathol. 2021;34:1850-1859.

Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics. Oncol Rep. 2017;37(1):3–9.

Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform. 2019;16(3).

Li F. Expression and correlation of miR-124 and miR-126 in breast cancer. OncolLett. 2019;17(6):5115-5119.

Wang S, Liu F, Ma H, Cui X, Yang S, Qin R. circCDYL Acts as a tumor suppressor in triple negative breast cancer by sponging miR-190a-3p and upregulating TP53INP1. Clin Breast Cancer. 2020;20(5):422–430.

Di Leva G, Gasparini P, Piovan C, et al. MicroRNA cluster 221-222 and estrogen receptor α interactions in breast cancer. J Natl Cancer Inst. 2010;102:706–721.

Wang Z, Liu J, Wang R, Wang Q, Liang R, Tang J. Long Non-Coding RNA Taurine Upregulated Gene 1 (TUG1) downregulation constrains cell proliferation and invasion through regulating Cell Division Cycle 42 (CDC42) expression via MiR-498 in esophageal squamous cell carcinoma. Med SciMonit: International Medical Journal of Experimental and Clinical Research. 2020;26:e919714-1.

Martens JW, Margossian AL, et al. DNA methylation as a biomarker in breast cancer. Future Oncol. 2009;5(8):1245–1256.

Sarhangi N, Hajjari S, Heydari SF, et al. Breast cancer in the era of precision medicine. MolBiol Rep. 2022;49:10023–10037.

Mulero-Navarro S, Esteller M. Chromatin remodeling factor CHD5 is silenced by promoter CpG island hypermethylation in human cancer. Epigenetics. 2008;3(4): 210–215.

Martens JW, Margossian AL, Schmitt M, Foekens J, Harbeck N. DNA methylation as a biomarker in breast cancer. Future Oncol. 2009;5(8):1245-1256.

Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

Zhou M, Yan JQ, Chen QX, et al. Association of H3K9me3 with breast cancer prognosis by estrogen receptor status. Clin Epigenetics. 2022;14(1):135.

Liu W, Cui Y, Ren W, et al. Epigenetic biomarker screening by FLIM-FRET for combination therapy in ER+ breast cancer. Clin Epigenetics. 2019;11:16.

Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A, et al. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. MolTher Nucleic Acids. 2020;20:409-420.

Pecero ML, Salvador-Bofill J, Molina-Pinelo S. Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer. Cell Oncol. 2019;42:1–12.

Qu Z, Fu J, Yan P, Hu J, Cheng SY, Xiao G. Epigenetic repression of PDZ-LIM domain-containing protein 2: Implications for the biology and treatment of breast cancer. J Biol Chem. 2010;285(16):11786-11792.

Arun G, Aggarwal D, Spector DL. MALAT1 long non-coding RNA: Functional implications. Non-Coding RNA. 2020;6(2).

Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin Epigenetics. 2018;10.

Lu Y, Chan YT, Tan HY, et al. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol Cancer. 2020;19:79.

Tsai HC, Baylin SB. Cancer epigenetics: Linking basic biology to clinical medicine. Cell Res. 2011;21(3):502–517.

Clermont PL. Epigenetics-based diagnostic and therapeutic strategies: Shifting the paradigm in prostate cancer. Epigenomics. 2023;15(2):75-87.

Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

Ascoët S, De Waard M. Diagnostic and therapeutic value of aptamers in envenomation cases. Int J Mol Sci. 2020; 21(10):3565.

Candelaria M, de La Cruz-Hernandez E, Taja-Chayeb L, et al. DNA methylation-independent reversion of gemcitabine resistance by hydralazine in cervical cancer cells. PLoS One. 2012;7(3):e29181.

Kaminskas E, Farrell A, Abraham S, et al. Approval summary: Azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res. 2005;11(10): 3604–3608.

Issa JP. Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: Dose, duration, and patient selection. Nat Clin PractOncol. 2005;2(1): S24–S29.

Ben-Kasus T, Ben-Zvi Z, Marquez VE, Kelley JA, Agbaria R. Metabolic activation of zebularine, a novel DNA methylation inhibitor, in human bladder carcinoma cells. Biochem Pharmacol. 2005;70(1): 121-133.

Szczepanek J, Skorupa M, Jarkiewicz-Tretyn J, Cybulski C, Tretyn A. Harnessing epigenetics for breast cancer therapy: The role of dna methylation, histone modifications, and MicroRNA. Int J Mol Sci. 2023;24(8):7235.

Chuang JC, Warner SL, Vollmer D, et al. S110, a 5-aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther. 2010;9(5):1443–1450.

Guo P, Chen W, Li H, Li M, Li L. The histone acetylation modifications of breast cancer and their therapeutic implications. PatholOncol Res. 2018;24:807-813.

Manal M, Chandrasekar MJN, Priya JG, Nanjan MJ. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg Chem. 2016;67:18-42.

Yoshida M, Kudo N, Kosono S, Ito A. Chemical and structural biology of protein lysine deacetylases. Proc JpnAcadSer B. 2017;93(5):297-321.

Libby EN, Becker PS, Burwick N, Green DJ, Holmberg L, Bensinger WI. Panobinostat: A review of trial results and future prospects in multiple myeloma. Expert Rev Hematol. 2015;8(1):9-18.

Laubach JP, Moreau P, San-Miguel JF, Richardson PG. Panobinostat for the treatment of multiple myeloma. Clin Cancer Res. 2015;21(21):4767-4773.

Sun Y, Sun Y, Yue S, Wang Y, Lu F. Histone deacetylase inhibitors in cancer therapy. Curr Top Med Chem. 2018; 18(28):2420-2428.

Bolden JE, Shi W, Jankowski K, Kan CY, Cluse L, Martin BP, Johnstone RW. HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis. 2013;4(2):e519.

Turtoi A, Peixoto P, Castronovo V, Bellahcène A. Histone deacetylases and cancer-associated angiogenesis: Current understanding of the biology and clinical perspectives. Crit Rev Oncog. 2014;20(1-2):123–138.

Murakami T, Sato A, Chun NA, Hara M, Naito Y, Kobayashi Y, Kobayashi E. Transcriptional modulation using HAD Cidepsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma. J Invest Dermatol. 2008; 128(6):1506-1516.

Woods DM, Woan K, Cheng F, Wang H, Perez-Villarroel P, Lee C, Villagra A. The anti-melanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity. Melanoma Res. 2013; 23(5):341-346.

Fedele P, Orlando L, Cinieri S. Targeting triple-negative breast cancer with histone deacetylase inhibitors. Expert OpinInvestig Drugs. 2017;26(11):1199-1206.

Chatterjee N, Wang WLW, Conklin T, Chittur S, Tenniswood M. Histone deacetylase inhibitors modulate miRNA and mRNA expression, block metaphase, and induce apoptosis in inflammatory breast cancer cells. Cancer Biol Ther. 2013;14(7):658–671.

Li L, Sun Y, Liu J, Wu X, Chen L, Ma L, Wu P. Histone deacetylase inhibitor sodium butyrate suppresses DNA double-strand break repair induced by etoposide more effectively in MCF-7 cells than in HEK293 cells. BMC Biochem. 2015;16:1-9.

Contreras-Leal E, Hernández-Oliveras A, Flores-Peredo L, Zarain-Herzberg Á, Santiago-García J. Histone deacetylase inhibitors promote the expression of ATP2A3 gene in breast cancer cell lines. MolCarcinog. 2016;55(10):1477-1485.

Hu Z, Wei F, Su Y, Wang Y, Shen Y, Fang Y, Chen Y. Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct Target Ther. 2023;8(1):11.

Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet. 2013; 14(11):765-780.

Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304.

Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish JA, Crabtree GR. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45(6):592–601.

Brown LJ, Achinger-Kawecka J, Portman N, Clark S, Stirzaker C, Lim E. Epigenetic therapies and biomarkers in breast cancer. Cancers. 2022;14(3):474.

Cheng X, Zhao JX, Dong F, Cao XC. ARID1A mutation in metastatic breast cancer: A potential therapeutic target. Front Oncol. 2021;11:759577.

De La Serna IL, Ohkawa Y, Higashi C, Dutta C, Osias J, Kommajosyula N, Tachibana T, Imbalzano AN. The microphthalmia-associated transcription factor requires SWI/SNF enzymes to activate melanocyte-specific genes. J Biol Chem. 2006;281(29):20233-20241.

Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010; 463(7280):474-484.

Wu Q, Sharma S, Cui H, LeBlanc SE, Zhang H, Muthuswami R, Nickerson JA, Imbalzano AN. Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells. Oncotarget. 2016;7(19): 27158-75.

Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019; 179(5):1033–1055.

Cheng X, Zhao JX, Dong F, Cao XC. ARID1A mutation in metastatic breast cancer: A potential therapeutic target. Front Oncol. 2021;11:759577.

Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–211.

Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–874.

Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov. 2017; 16(3):167–179.

Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428-442.

Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer. 2022;1874(2):188413.

Dsouza V, Adiga D, Sriharikrishnaa S, Suresh PS, Chatterjee A, Kabekkodu SP. Small nucleolar RNA and its potential role in breast cancer–A comprehensive review. Biochim Biophys Acta Rev Cancer. 2021; 1875(1):188501.

Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res. 2006;34(8):2294-2304.

Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP. TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest. 2013;123(1):150-163.

Li Z, Rana TM. Therapeutic targeting of microRNAs: Current status and future challenges. Nat Rev Drug Discov. 2014; 13(8):622-638.

Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016;6(3):235–246.

Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. Biochim Biophys Acta Gene Regul Mech. 2020;1863(4): 194378.

Shafi A, Mitrea C, Nguyen T, Draghici S, Aerts S. Understanding epigenetic alterations in complex diseases using bioinformatics. Curr Bioinformatics. 2016; 11(4):449-459.

Gupta MK, Gouda G, Donde R, Vadde R. Tumor heterogeneity: Challenges and perspectives for gastrointestinal cancer therapy. In: Vadde R, Nagaraju GP, eds. Immunotherapy for gastrointestinal malignancies. Springer Nature Singapore Pte Ltd; 2020;1-24.

Karami Fath M, Azargoonjahromi A, Kiani A, et al. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett. 2022;27(52).

Illumina. Understanding epigenetic modifications and their impact on gene regulation. Illumina. Available:https://www.illumina.com/techniques/popular-applications/epigenetics.html [Accessed December 2, 2023].

Lee YT, Chuang YM, Chan MWY. Combinatorial epigenetic and immunotherapy in breast cancer management: A literature review. Epigenomes. 2020;4(4):27.

Misra BB, Langefeld C, Olivier M, Cox LA. Integrated omics: Tools, advances and future approaches. J Mol Endocrinol. 2019; 62(1):R21-R45.

Luis J. Epigenetic IVD tests for personalised precision medicine in cancer. Front Genet. 2019;10:463022.