Epigenetic Mechanisms of Metal Carcinogenicity: Exploring Associated Therapeutic Options for Individualised Treatments

Fidelis Godae Beega *

Department of Clinical Chemistry, Faculty of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

Kemzi Elechi-Amadi

Department of Clinical Chemistry, Faculty of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

Simeon Christopher Aloy

Department of Haematology and Transfusion Science, Faculty of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

Sheudeen Abubakar Abiola

Department of Clinical Chemistry, Faculty of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

Okorocha, CyrilGentle Ugochukwu

Department of Public Health, Claretian University of Nigeria Maryland, Nekede, Nigeria.

Ibioku Elekima

Department of Clinical Chemistry, Faculty of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria and Department of Medical Diagnostics, Cranfield University, Cranfield, United Kingdom.

Edna Ogechi Nwachuku

Department of Clinical Chemistry, Faculty of Medical Laboratory Science, Rivers State University, Port Harcourt, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

While naturally occurring, heavy metals pose a significant global public health risk due to their extensive utilisation in industrial, residential, and agricultural activities, impacting the health of millions worldwide. Occupational and environmental exposure to these metals through contaminated sources affects organs, including the development of cancer. Arsenic, chromium, nickel, and cadmium, among others, have been classified by the International Agency for Research on Cancer (IARC) as Group 1 carcinogens, indicating a strong association with various types of cancer. Cancer ranks as the second leading cause of death globally, with an estimated 9.6 million deaths attributed to it. Numerous mechanisms contribute to heavy metal-induced carcinogenesis, including oxidative stress, DNA damage, and aberrant signalling transduction pathways. Recent advancements in understanding epigenetics have unveiled the role of epigenetic alterations in cancer development. Epigenetic alterations are functionally relevant modifications which affect gene expression but do not change the DNA sequence. Two primary epigenetic mechanisms—histone modification and non-coding RNA (ncRNA)-are associated with gene silencing and DNA methylation, which are pivotal in regulating gene expression and cell differentiation. Alterations in these epigenetic patterns contribute to metal-induced carcinogenicity by rendering tumour suppressor genes inactive while activating anti-apoptotic and pro-proliferative genes. Understanding the underlying epigenetic mechanisms of heavy metals holds promise for guiding future research and developing targeted therapeutic interventions. Various inhibitors, including DNA methylation inhibitors (DNMTIs), histone modification inhibitors (HMIs), histone deacetylase inhibitors (HDACIs), histone methyltransferase inhibitors, and non-coding RNA-targeted therapies, offer avenues for interfering with these mechanisms, thereby positively impacting the treatment of metal-induced cancers, mainly through individualised treatment approaches.

Keywords: Epigenetics, heavy metals, carcinogenesis, histone modifications, DNMTIs, miRNAs


How to Cite

Beega , Fidelis Godae, Kemzi Elechi-Amadi, Simeon Christopher Aloy, Sheudeen Abubakar Abiola, Okorocha, CyrilGentle Ugochukwu, Ibioku Elekima, and Edna Ogechi Nwachuku. 2024. “Epigenetic Mechanisms of Metal Carcinogenicity: Exploring Associated Therapeutic Options for Individualised Treatments”. International Research Journal of Oncology 7 (2):142-58. https://journalirjo.com/index.php/IRJO/article/view/156.


References

Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Mol Clin Environ Toxicol. 2012;101:133–164.

Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere. 2021;262:128350.

He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol. 2005;19(2–3):125–140.

Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic regulation in chromium-, nickel- and cadmium-induced carcinogenesis. Cancers. 2022;14(23):5768.

Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, Vellingiri B, George A, Valsala Gopalakrishnan A. molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium)-induced hepatotoxicity—A review. Chemosphere. 2021;271:129-137.

International Agency for Research on Cancer (IARC): Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts. A Review of Human Carcinogens. Lyon, France. 2012;1-52.

Islam R, Zhao L, Wang Y, Lu-Yao G, Liu LZ. Epigenetic dysregulations in arsenic-induced carcinogenesis. Cancers. 2022;14(18):4502.

World Health Organization. Cancer. [Internet]. 2023 [cited 2023 Oct 6].

Available:https://www.who.int/health-topics/cancer#tab=tab_1

Kim HS, Kim YJ, Seo YR. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J Cancer Prev. 2015;20:232–240.

Baylin SB, Ohm JE. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6(2):107–116.

Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics. 2011;6:820–827.

Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81(4):303–311.

Manić L, Wallace D, Onganer PU, Taalab YM, Farooqi AA, Antonijević B, Djordjevic AB. Epigenetic mechanisms in metal carcinogenesis. Toxicol Rep. 2022;9:778-787.

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M. Global cancer observatory: Cancer today. Lyon: International Agency for Research on Cancer. [Internet]. 2020 [cited 2021 Feb].Available:https://gco.iarc.fr/today.

American Cancer Society. The Cancer Atlas. The Burden of Cancer. [Internet]. 2024 [cited 2024 Jan]. Available:The Cancer Atlas website

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249.

World Health Organization. Cancer. [Internet]. 2022 [cited 2022]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer

Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–2128.

Jemal A, Bray F, Center MM, Ferlay J, Forman D. Global cancer statistics. Cancer J Clin. 2011;61(2):69–90

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

Union for International Cancer Control (UICC). Global Cancer data: GLOBOCAN 2018. [Internet]. 2018 [cited 2024 Jan].Available:www.uicc.org/news/global-cancer-data-globocan-2018

Luo L, Wang B, Jiang J, Huang Q, Yu Z, Li H, et al. Heavy metal contaminations in herbal medicines: determination. comprehensive risk assessments. Front Pharmacol. 2020;11:595–635.

Costa M. Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol Appl Pharmacol. 2019;375:1–4.

Gazwi HS, Yassien EE, Hassan HM. Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol Environ Saf. 2020;192:110–197.

Clancy HA, Sun H, Passantino L, Kluz T, Muñoz A, Zavadil J. Gene expression changes in human lung cells exposed to arsenic, chromium, nickel, or vanadium indicate the first steps in cancer. Metallomics. 2012;4(8):784–793.

Koedrith P, Kim H, Weon J-I, Seo YR. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health. 2013;216(5):587–598.

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781-3.

Sheudeen AA, Ben-Chioma AE, Beega GF, Simeon CA, Anthony AU, Ibioku E. Epigenetic Modulation in Breast Cancer: From Mechanisms to Therapeutic Interventions. Int Res J Oncol. 2024;7(1):1-13.

Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487-500.

Wang B, Li Y, Shao C, Tan Y, Cai L. Cadmium and its epigenetic effects. Curr Med Chem. 2012;19:2611-20.

Henikoff S, Greally JM. Epigenetics, cellular memory and gene regulation. Curr Biol. 2016;26(14):R644-8.

Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23-38.

Kaplun DS, Kaluzhny DN, Prokhortchouk EB, Zhenilo SV. DNA methylation: genomewide distribution, regulatory mechanism and therapy target. Acta Naturae. 2022;14(4):4-19.

McMahon KW, Karunasena E, Ahuja N. The Roles of DNA Methylation in the Stages of Cancer. Cancer J. 2017;23(5):257-61.

Nevin C, Carroll M. Sperm DNA Methylation, Infertility and Transgenerational Epigenetics. J Hum Genet Clin Embryol. 2015;1.

Cox M, Nelson DR, Lehninger AL. Lehninger Principles of Biochemistry. W.H. Freeman; 2005.

Audia JE, Campbell RM. Histone Modifications and Cancer. Cold Spring Harb Perspect Biol. 2016;8:19-34.

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–395.

Greer EL, Shi Y. Histone methylation: A dynamic mark in health, disease, and inheritance. Nat Rev Genet. 2012;13:343–357.

Kouzarides T. Chromatin Modifications and Their Function. Cell. 2007;128:693–705.

Renaude E, Marie K, Borg C, Peixoto P, Hervouet E, Loyon R, et al. Epigenetic reprogramming of CD4+ Helper T cells as a strategy to improve anticancer immunotherapy. Front Immunol. 2021;12:669992.

Morris KV (Ed.). Non-coding RNAs and Epigenetic Regulation of Gene Expression: Drivers of Natural Selection. Caister Academic Press; 2012.

Yan H, Bu P. Non-coding RNA in cancer. Essays Biochem. 2021;65:625–639.

Gao Y, Fan X, Li W, Ping W, Deng Y, Fu X. MiR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem Biophys Res Commun. 2014;446:179–186.

Guzel E, Okyay TM, Yalcinkaya B, Karacaoglu S, Gocmen M, Akcakuyu MH. Tumour suppressor and oncogenic role of long non-coding RNAs in cancer. North Clin Istanb. 2020;7:81–86.

Zhang Y, Xiang C, Wang Y, Duan Y, Liu C, Jin Y, et al. lncRNA LINC00152 knockdown had effects to suppress biological activity of lung cancer via EGFR/PI3K/AKT pathway. Biomed Pharmacother. 2017;94:644–651.

Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21(1):28–44.

Tchounwou PB, Centeno JA, Patlolla AK. Arsenic toxicity, mutagenesis, and carcinogenesis - a health risk assessment and management approach. Mol Cell Biochem. 2004;255:47–55.

Arita A, Costa M. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics. 2009;1(3):222–228.

Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L. An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect. 2011;119(1):11–19.

Bustaffa E, Stoccoro A, Bianchi F, Migliore L. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol. 2014;88:1043–1067.

Ahlborn GJ, Nelson GM, Ward WO, Knapp G, Allen JW, Ouyang M, et al. Dose-response evaluation of gene expression profiles in the skin of K6/ODC mice exposed to sodium arsenite. Toxicol Appl Pharmacol. 2008;227(3):400–416.

Brocato J, Costa M. Basic mechanics of DNA methylation and the unique landscape of the DNA methylome in metal-induced carcinogenesis. Crit Rev Toxicol. 2013;43:493–514.

Kile ML, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, et al. Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. Environ Health Perspect. 2012;120:1061-1093.

Paul S, Bhattacharjee P, Giri A, Bhattacharjee P. Arsenic toxicity and epimutagenesis: the new LINEage. Biometals. 2017;30:505–515.

den Braver-Sewradj SP, van Benthem J, Staal YCM, Ezendam J, Piersma AH, Hessel EVS. Occupational exposure to hexavalent chromium. Part II. Hazard assessment of carcinogenic effects. Regul Toxicol Pharmacol. 2021;126:105-145.

Salnikow K, Zhitkovich A. Chemical Research in Toxicology. 2008;21(1):28-44.

Feng L, Guo X, Li T, Yao C, Xia H, Jiang Z, et al. Novel DNA methylation biomarkers for hexavalent chromium exposure: An epigenome-wide analysis. Epigenomics. 2020;12:221-233.

Hu G, Li P, Li Y, Wang T, Gao X, Zhang W, et al. Methylation levels of P16 and TP53 that are involved in DNA strand breakage of 16HBE cells treated by hexavalent chromium. Toxicol Lett. 2016;249:15–21.

Hu G, Li P, Cui X, Li Y, Zhang J, Zhai X, et al. Cr(VI)-induced methylation and down-regulation of DNA repair genes and its association with markers of genetic damage in workers and 16HBE cells. Environ Pollut. 2018;238:833–843.

Takahashi Y, Kondo K, Hirose T, Nakagawa H, Tsuyuguchi M, Hashimoto M, et al. Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog. 2005;42:150–158.

Tsuboi M, Kondo K, Soejima S, Kajiura K, Kawakita N, Toba H, et al. Chromate exposure induces DNA hypermethylation of the mismatch repair gene MLH1 in lung cancer. Mol Carcinog. 2020;59:24–31.

Ali AH, Kondo K, Namura T, Senba Y, Takizawa H, Nakagawa Y, et al. Aberrant DNA methylation of some tumour suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog. 2011;50:89–99.

Sun H, Zhou X, Chen H, Li Q, Costa M. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol Appl Pharmacol. 2009;237:258-266.

Zhou X, Li Q, Arita A, Sun H, Costa M. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol. 2009;236:78-84.

Xia B, Ren XH, Zhuang ZX, Yang LQ, Huang HY, Pang L, et al. Effect of hexavalent chromium on histone biotinylation in human bronchial epithelial cells. Toxicol Lett. 2014;228:241–247.

Ge X, He J, Wang L, Zhao L, Wang Y, Wu G, et al. Epigenetic alterations of CXCL5 in Cr (VI)-induced carcinogenesis. Sci Total Environ. 2022;838:155-137.

Speer RM, Meaza I, Toyoda JH, Lu Y, Xu Q, Walter RB, et al. Particulate hexavalent chromium alters microRNAs in human lung cells that target key carcinogenic pathways. Toxicol Appl Pharmacol. 2022;438:115-189.

Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, et al. Toxicological profile for cadmium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US).Available:http;//www.ncbi.nlm.nih.gov/books/NBK158838/

Benbrahim-Tallaa L, Waterland R, Dill A, Webber M, Waalkes M. Tumour suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect. 2007;115:1454–1459.

Liang Y, Pi H, Liao L, Tan M, Deng P, Yue Y, et al. Cadmium promotes breast cancer cell proliferation, migration, and invasion by inhibiting ACSS2/ATG5-mediated autophagy. Environ Pollut. 2021;273:116-194.

Tanwar VS, Zhang X, Jagannathan L, Jose CC, Cuddapah S. Cadmium exposure upregulates SNAIL through miR-30 repression in human lung epithelial cells. Toxicol Appl Pharmacol. 2019;373:1–9.

Yang J, Chen W, Sun Y, Xia P, Liu J, Zhang W. The role of microRNAs in regulating cadmium-induced apoptosis by targeting Bcl-2 in IEC-6 cells. Toxicol Appl Pharmacol. 2021;432:115737.

Wang Z, Sun Y, Yao W, Ba Q, Wang H. Effects of Cadmium Exposure on the Immune System and Immunoregulation. Front Immunol. 2021;12:695484.

García-Pérez J, Pérez-Abad N, Lope V, Castelló A, Pollán M, González-Sánchez M, et al. Breast and prostate cancer mortality and industrial pollution. Environ Pollut. 2016;214:394–399.

Govindarajan B, Klafter R, Miller MS, Mansur C, Mizesko M, Bai X, et al. Reactive oxygen-induced carcinogenesis causes hypermethylation of p16Ink4a and activation of MAP kinase. Mol Med. 2002;8(1):1-8.

Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, et al. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: A new model for epigenetic carcinogens. Mol Cell Biol. 1995;15:2547–2557.

Ellen TP, Kluz T, Harder ME, Xiong J, Costa M. Heterochromatinisation as a potential mechanism of nickel-induced carcinogenesis. Biochemistry. 2009;48:4626–4632.

Wu CH, Tang SC, Wang PH, Lee H, Ko JL. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292–25302.

Jose CC, Wang Z, Tanwar VS, Zhang X, Zang C, Cuddapah S. Nickel-induced transcriptional changes persist post-exposure through epigenetic reprogramming. Epigenetics Chromatin. 2019;12:75.

Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer. 2020;19:1-16.

Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci. 2021;28(1):1-58.

Kumoglu GO, Sendemir A, Tanyolac MB, Bilir B, Kucuk O, Missirlis YF. Epigenetic mechanisms in cancer. Longhua Chin Med. 2022;5:1-25.

Cheishvili D, Boudreau L, Szyf M. DNA demethylation and invasive cancer: implications for therapeutics. Br J Pharmacol. 2015;172(11):2705-2715.

Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4(1):62.

Zhang J, Yang C, Wu C, Cui W, Wang L. DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy. Cancers. 2020;12:2123.

Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu GL, Hu YG, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol. 2004;24(3):1270-1278.

Parker WB, Thottassery JV. 5-Aza-4'-thio-2'-deoxycytidine, a new orally bioavailable nontoxic "best-in-class": DNA methyltransferase 1-depleting agent in clinical development. J Pharmacol Exp Ther. 2021;379(3):211–222.

Sun N, Zhang J, Zhang C, Zhao B, Jiao AO. DNMTs inhibitor SGI 1027 induces apoptosis in Huh7 human hepatocellular carcinoma cells. Oncol Lett. 2018;16(5):5799-5806.

Zwergel C, Fioravanti R, Stazi G, Sarno F, Battistelli C, Romanelli A, et al. Novel quinoline compounds active in cancer cells through coupled DNA methyltransferase inhibition and degradation. Cancers. 2020;12(2):447.

She S, Zhao Y, Kang B, Chen C, Chen X, Zhang X, et al. Combined inhibition of JAK1/2 and DNMT1 by newly identified small-molecule compounds synergistically suppresses the survival and proliferation of cervical cancer cells. Cell Death Dis. 2020;11(9):724.

Jang SY, Hong D, Jeong SY, Kim JH. Shikonin causes apoptosis by up-regulating p73 and down-regulating ICBP90 in human cancer cells. Biochem Biophys Res Commun. 2015;465(1):71-76.

Boulos JC, Rahama MS, Hegazy ME, Efferth T. Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 2019;459:248-267.

Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311(5762):844-847.

Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673-691.

Miyanaga A, Gemma A, Noro R, Kataoka K, Matsuda K, Nara M, et al. Antitumour activity of histone deacetylase inhibitors in non-small cell lung cancer cells: development of a molecular predictive model. Mol Cancer Ther. 2008;7(7):1923-1930.

Zhang J, Zhong Q. Histone deacetylase inhibitors and cell death. Cell Mol Life Sci. 2014;71:3885-3901.

Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769-784.

Li Z, Zhu WG. Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int J Biol Sci. 2014;10(7):757.

Ryan QC, Headlee D, Acharya M, Sparreboom A, Trepel JB, Ye J, et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol. 2005;23(17):3912-3922.

Kumar S, Gutierrez M, Gardner ER, Donovan E, Hwang K, Chung EJ, et al. Phase I trial of MS-275, a histone deacetylase inhibitor, administered weekly in refractory solid tumors and lymphoid malignancies. Clin Cancer Res. 2007;13(18):5411-5417.

Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br J Clin Pharmacol. 2021;87(12):4577-4597.

Luo M. Chemical and biochemical perspectives of protein lysine methylation. Chem Rev. 2018;118(14):6656-6705.

Hoy SM. Tazemetostat: first approval. Drugs. 2020;80(5):513-521.

Ziao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal. 2023;13(2):127-141.

Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA, et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood. 2013;122(6):1017-1025.

Cao H, Li L, Yang D, Zeng L, Yewei X, Yu B, et al. Recent progress in histone methyltransferase (G9a) inhibitors as anticancer agents. Eur J Med Chem. 2019;179:537-546.

Szymanowska A, Rodriguez-Aguayo C, Lopez-Berestein G, Amero P. Non-Coding RNAs: Foes or Friends for Targeting Tumour Microenvironment. Non-coding RNA. 2023;9(5):52.

Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. Electron J IFCC. 2019;30(2):114.

Nava VE, Perera PY, Kumar N, Jain M. Noncoding-RNA-Based Therapeutics with an Emphasis on Prostatic Carcinoma—Progress and Challenges. Vaccines. 2022;10(2):276.

Deshwal A, Kaur N, Mehta P, Thakur N. A Review on the Effects of Cadmium Toxicity on Living Beings. J. Pharm. Res. Int. [Internet]. 2021 Dec. 14 [cited 2024 May 15];33(57A):300-5.Available:https://journaljpri.com/index.php/JPRI/article/view/4761

Egiebor E, Tulu A, Abou-Zeid N, Oseji OF, Ishaque AB. Oxidative stress pathway mechanisms induced by four individual heavy metals (As, Hg, Cd and Pb) and their quaternary on mcf-7 breast cancer cells. J. Adv. Med. Med. Res. [Internet]. 2016 Aug. 25 [cited 2024 May 15];17(7):1-11.Available:https://www.journaljammr.com/index.php/JAMMR/article/view/370

Romaniuk А, Lyndin M, Sikora V, Lyndina Y, Romaniuk S, Sikora K. Heavy metals effect on breast cancer progression. Journal of Occupational Medicine and Toxicology. 2017;12:1-9.